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R&‘Ti‘in CI

Tne knapsack probiea nas tracitlionally been solved by dynanic
programaing, thougl 8 uure recent enuusrative algorithm by r. C.
ullnore anu n, . Gowory has proved scaewhat more efficient. In this
paper reistions are develcped wilch substantially reduce the number
of soluticns wnich must be exanined by the Gilmors-Gaaory method, or by
any algoritim for Loe snansack sroblem winlen uses an enunerative base.
wur resulti enable certain prodblems for whieh toe Giinmore-Gonory method
reduces alrost LO comnlete wvnwagr-ticn Lo be solved after examining only
a2 handful of aiternatives, Compiuter studies tc provide detajled
couparisons of netrods wilch do and de not enploy these results have not

Y8l bean unceriakern.
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Form of' the Problen.

‘The kuapsack problem may be writien
(1) Maxinize ox
sub ject to ax I 9, x > U and x inteyer,
where ¢ » ( ¢, ©

cn)andav(a Ll an)arelxnmw

- i L@
vectors of positive conatants, t is a positive scalar, and x ~ (xl Xy veo z:n)T
is an n x 1 coluan vector of nonnegative integer variables. Frequently
(1) is accompanied by an adaitional set of restrictions of the form
Xy < 3 for § < 1, .oc » By 1n which case we will refer to it as the
bounded variable knapeack protlean.

Practical application for the knapsack pronlem of some significance
has been found by P. C. Gilmore and R. E. Gomory. In references 3 and 4
these authors show how the knapsack problem may be used to enabls cer ain
~Joert  rogramning problems involving an enormous number of variables
to be usefully handled with linear programming methods. With the introduction
of a special enumerative algorithm in (L], Gilmore and Gomory found it
possible to obtaln solutiors for the knapsack problem about five times
more rapidly than with dynamic program:ing, and thereby were able to use
their method as an adjunct to the linear programuing algoritha to solve
problens from the paper industry within reascnable time iimites on the
computer. Nonetheless, couputation devoted to soiving the knapsack
problens was a sizable fractjon of total computation, so that laproved
algorithms for problea (1) would seem to be assured of imnediate appiicaticn.

In what follows we will first outline the enumerative algorithm

for (1) proposed by Gilumore and Gecuory, and then by means of 1iscusaion
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and theorems develop relatione designed to exclude a substantial number
of molutions from consideration when applying any such enumerative method.

Giloore and Gowory's Method.

It 18 oustomary in dealing with problem (1) to index each variabie
x4 in terms of its contribution € to the cbjective function valiue, divided
N by which this wvariable oceupins a portion of the

available "space” in the constraint ax < b. This practice appears to have

by the amount u

originated with Dantzig (2], anu will be adhered to throughout the
remainder of Lhis paper; 1.e.; we assune qlla] > °2‘/a2 > aen P cn/an,

The algorithn of Gilnore ana Gomory uses-t‘hja indexing as the
basis for & lexicographic ordering ol the solutions to be enumerated, and
as a means for Lesting when certain aolutions may be Uypassed in the
enumerntion.'l It say be obs<rved that the lexicographically largest
solution X which satisfies ax < b 15 given by

X, = lb/al];‘"lanu
Xk i [(b - 15‘1 alxi/&k] fO!" k = 29 s n'

since clearly no value of £, can exceed il' and given ‘1 - 'i], no value

" ote.? Also, by defining s < max(i | x, ¥ 0), it may

of %, an exceed %
be seen that for any feacible solution x to (i), the lexicographically
largeat. aclutlon X whish is lexicographically emalier than x is given Ly
{ x. for k< s
<
A ‘} : 1 B
X ) K o for k =~ @
K-l k.
gl =S - f 10 * s 805
[(t L aix.\)‘/&k] or k = 8 ¢ 1, , n

1%}
amemy

1. The Gilncre-Gouory metnod s coupled with a2 technique which enables
a4 number of kns-onack problems heving the same a and ¢ wectors to be solved
similtanecusly. 7The basis for this technique may be seen by noting that
the rot of feasible soluticna o (i) for b - b, 1s a subsel of the set of
- e . o)
feasfbie solutions to (i, for b 2= bu»
P we wee the asyatol (0] %0 derote Lie greatest (nteger jess Lhan or egual to #
A w22 Lo dencte the Jesst inloger gresier Lhan or sgual to 2
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E:cept for the test which rules certain solutions out of
consideratlion, the Gllmore-Gomery method begins with “he lexicographically
largest x, and then reaefines x to equal '2, repeating Lhis process until
there 2re no sclutions left Lo be gengrated. o avold enuseration of all
posaibilities, the iargest waiue i of cx obltalnec at any point in the
proces: ie used to rule cut sxaminaticn of some »i those solutions x for
which ¢x < 4. This is acsowplisted as Joliows.

For any feasible sclution x', counsider probiem (1) sudbject to the

additicnal restriction that x, = x “ {or i =~ 1, ... , », where s iy orween

3 1
wo Lt :1' + 0 for { o Then (i) is replaced by
2 Maxioize L CoXy ¢ cx'
subject Lo c 2% L b - ax’
e 7

If s = n; the objective fwiction vaiue for this problem {s triviaily equal
to ex’'. Otherwise, an upper bound on the value of the objective function
for (2) ie given bty relaxing the integer requirensnts on the variables Xy
for § > 8. [me to the ordering of the variables the solution to the problem
in this case is cloarly to take the value of Xy.q 2B large as possible,

or X .4 " (b ~ zxx")/as’lf This ylelds the objective functior value

ax' ca'-,l(b - ax,“)/as.l” which we will denote by ¥, Thus, given any
solutfon x', a necessary cuncitiocn thut there exist an integer solution

x* suct that ex’ > i and xi‘ = a ' for i < 3 is Just M> 4, Gilmore and
Gouory use tais fact (n their algoriths by dividing the step which

defines X into two parts. In the first part they define the suviution x

se Lrat

t»
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where & = max(i | ii 4 0i. 1f M > M, the definttlon of R s comileted as
eariier, and the erumeration imoceas contiouea wilnterruptea. Sut 4€

4 < My all sclutions whicn agree wlin x' &0 the first a components
({nclwiing X) may cleapiy be {znermea. Thus the aaxi step of the enumeration
would ba to cbtain the new x wnich is tie lexicographicaliy iargest sclution
lexicographicaliy smaller than x'. But Lln fact %hc new x cannot agree

with x' in its first s = 1 couponents (s still defined relative to the
previous xj, since then X must be smaller than x' in the sth ocomponeat,

and the test § > M would clearly be failed sgaln. (M cannot increase
until xi‘ is {ncreaseu for &t least one i such that § < s.) Thus, when

4 < M, ;‘s is imnediately set equal to O, and the vactor 2 1s defined
relative to this latter x.

In conjunction with their algorithm, Gilmore and Gomory use a
prelininary trim.ing technique which throws away a number of the problem
variables before enumeratior begins. Whenever e °J’ one of the L.wo
variables X, or x, may be discarded, depending on the relative sizes of

J

ai and aJo Thus for “1 - eJ

since it may always be replaced oy X, in any optimal solution. While

and 8 5;\,, the wvariable "3 may be dropped

Gilmore and Gomory note that such an equality of "pricea" would not
normally be expected, they found it to occur with sufficient frequency

7 Lie roblews they exan .ned to cuuse the average ajze of these problems
‘0 te reduced from 30 to 18.2 variables.

iglations for #n Ixproved Algoritim.

In this section we will consider the more general form of problem ())

in which X, < 9 for £ « 1, ..~ , 0, where the a, are sssunei to be integer.

sihen a, fb/ai], will we continue to refler tc x, as "unbounded.”™ It s

svident that the levicopraphically lapgent feasible aclution x to (1)

e o |




for the more general formulation is given by

x, = aia(a;, (b/a; 1), and

n
S k-1
ﬁ( - min(ﬂp, {(h L ixi)/a‘(]), for s = 2. ans a N>
- i=l

Similarly, for any feasible solution X, the lexicographically largest
feasible solution % which is lexicogranhically smaller than x is given by
- )
( )C, 101‘ I Sy
A
xk - 2 — AR 55 8
. et
min(t ! (b - L aif;;i),’a,r]) for k »» s,
=1 .

wheie 3 * max(4 | x‘ # 03, av before.

we will adheme to the convention thet X will always be definerd
as above relative to any given x. we will nlsc folluw the conventior,
unlesas specified otherwise, that x' will be defined as in the preceding
section to be the same as x except in the gt.h coamponent, i which cuse
e S ia ~ i. As alrescy noted. any solution lexicographically smaller
then ¥ must agree with x' in the first s components.

The proci{s of the theoraas to follow &re given in the appendix.

Theores 1. If thare exist nonnegative integers hi such that

(1) hk O (11} 1fikh"ci > hkc'x' (111) 1:£k hiai < hk‘y' and
(1v) [(b - akhk';/’ai) chy 5o forall i such that iy $0and 4 # k,

than there exists an optimal eolution x* to 1) in whieh xk' < hk"

Moreover, 1f L hic, > he o then xk‘ < in every optimal sclution
*to (1).

wWhen hx » 1y, Theoren ]! gives a somewhst stronger criterion for
ruiing variables out of consiceration than provided by the fortuitous

coniition ¢, = ¢ one of the siupler ways Lo exploit the theorem when

It

the x, are unboundec {5 to drep x, whenever an ! existgs such thral
g N



<cJ/ci>ai S &y tubgtantial reduction of the space of solutions to be
enunerated may also be erfected by usl ng the theoren to provide more
restrictive upper bounds for some of the protlem variables.
Expaple.
vaxini ze 243, ¢ 5%y ¢ l&xj » 6:1‘ + "x5 . lOaL6 . 8x7

- 2
For this oroblem in unbounded variables, X, @AYy be used to rule out all

subject Lo  B8x, *+ 2%, * 7x.} * 3x, bxg ¢ 6x6 *+ SJL’ <19

variables except x, ana x, ., uvsing the relation <¢,/c.>a, < a,. In addition,
Pt X YT s %y

4
X, - > and x, & 1 are faplied by the coefficients of X and X, respectively.

o
we observe Lhat apy theorem concerning protlem (1) applies also
to prohblex (2) of the precading seciion, with 4 restricted to { > s,
b replaced by b - ax’, eLc. Thus when the G, are too suall to permit
extensive us¢ of Thaorem i bef . the enumeraticn begins, it may be noted
that more fruitful results mey .. avallable when [(b - ax’ )/ail becomes
closer to a, in this case, certain variables may be "temporarily"” ruled
out of cc.\ns,\\demt,.‘u.m.-l
The next, three thaorems present additional ways of uncovering
restrictions on the x, whern & feasible solution is obtained.

Theoren 2. For any feasible solution X, and for any q such that

ax * a_ >b, let l‘q - il . i4aq <cq/ci> < ST | 18 <°’q/°1>"i s_aq},.

1

Then there cxiste an optimel solution x* such that (i) xq‘ < iq’ or
(437 %% < S'ci for at least ope i such that § f Pqn If in the definition of

Pq, [cq,;-‘bil + 1 replaces (cqfci>, tren (i) or (1) must hold for every

optimal solutior x*.
1. & =aimple way of keeping track of such tenporary resirictions is given
by the author in (S}, where zore flexible enumeration vrocedures than the

laxicographically cecreasing svlution sequence are also presented. Simllar
procedures are also emploved by iLgon Balas in the prior article {1).
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One of the uses of Theorem 2 is as follows. OSuppose a fersible
solution x is obtained at any point in the enumeration process for which
ax ¢ a, >b and 321 =0 for i ¢ Pqn Then it imuediately foliows that
xq‘ s 0 in sone optimal sclution x*, ana hence the variable xq rmay be
dropped from the problem. Similarly, when r." > iq > O, and the same
ecnditions as atove otherwise ohtain, ?q WAY P@DIACE = to provide a more
restrictive upper boung or e
Exanple.

(3 - & '!: & ~ o 1 . : ’ -

Maxim]ze 18;.1 * 17.:2 ?)c‘3 46":. lt.x5 .2):6 ' u’x.' + Ith

o, - Sy 2

subject tc  3x, ¢ sz . %13 Ixu X, bx, * ox, * x, = 63
and °‘i =S fepdall <.

For thie exanple, a feasiltle sciuti'n is given by x, * % for 3 < 3, and
;1 = 0 for § > 3. Hence, applying Theorem ¢, it follows thatl s 37, and
Xg @Ay be eliminated from consideration in nolving for the optimum.
Theorem 3. For any feasibie solution X ia which thers exists s component

xp) 3, let *\p » {1 ' i d p, <:'i/ep> < ap . "p e 1, f;cl,/cp‘)cp 5&13 -

Then therec exists an optimsl so.ution x* in which (i) xp’ > ;p or
(11) xl’ > ;.t for at least one ! such that i f <’ It in the definition
of Qp’ <01/cp> is replacei by :ci/'c.ql + 1, then (1) or (11) hLolds for
every optiual sclution x* to (1.

Theoreu 3 is very nearliy s reverse image of Theorem 2, One use for
thia theorsi occurs when a feasible solution x 1s obtained for wlich
'ip > U ang E.'r ay for 4 4 ‘\p (exrept pos«ibly for { = p). The problem
may then te simplified bty replacing %5 with the new nonnegative
integer variable 2« x_ -~ x_, whlen has the upver bowd 2 - x . (If

e p E I p

1 o« x_ o G, thea 2 way of course be dropoed.) A second use is given

=
<
-



by the following corcllary.
Corollary to Theorem 3. Let x be a feasible solution for (1), and let

8 = max(i| x, ¥ 0). Then x is optimal if (i) a, >0~ ax for { > s,

(11) ii *a, for 4 <s, and (1ii) for each i and p such that p< s, i > s,

> ¢, and a

FA.WEIB.
Maxtnlze ‘le1 + 13)&2 - ")x3 + IOxh ) Bxs . 9x6 - 6x7

subject to 2%, * hxz*JxB‘l.xL'hxs*be‘bx?gSz

a, = 10 6 S S 7 3 5

Apolying the corcllary to this problem roveals that the soliution

psai"

X obtained by setting ij_ “a forighand ;‘c.i = O for L >4 i3 optimal.
IL is to be noted that the coroilary provides a sufficieat condition

for the lexicographically largest feasible sclution to (1) to be optimal.
Whea R replaces x in the enumeration process, by extension the corollary
2y also be used to give & sufficlent condition that % is optimal {rom
asong those which agree with % in the first s components, providing a meanc
for shortcutting the enumeration when the proper conditions ottain.

A theorem of a somewhat cifferent nature; mut which may also be
usad to identify an optimal solution, cr prescribe becunds for sertain of
the Xy is as follows.

Theores 4. Let X and 8 be given as in Lhe precwding corollary, and let

q be any subseript greater than s. let G =~ b - ax, and let h be a positivs
int.eger auch that nq > G/%. Then if cq_/(aq - G/n) < cu/as, there axiste
an optimal solution x* such that (i) xq‘ <h or (&4, x* > i‘l for at
least one { such that §{ < n. If cq/(allq G/h) < "’/a’, ther: (1, or (i1)

holds for all optimal solutions x* to (1;.

iy S




Egauple.
Maximire 8:7)391 . lObx2 . 571«'.} ¢ IOSxL . 7()::S - ab‘xe’ . 97x7 * Gixe
gubject tc mx,l + h'-.xz ' Rx.j ¢ 15xl‘ 4 12;15 . ?”{) v IBx.? * ldxa < 380
anc o, & for all 1.

The feausible soluticn for Lhis procblew obtalned by setting
;‘i ~a, . 8 for 1 < 4L, and Xy O for § » 4, yielas a vaiue for G (s b - Ax )
of 4. To find the most resirictive bounds on the xQ for g = 4 which
can be derived from thiasolution, we wirh to aininize h for each suech
variahle, subfect Lo the restrictions of e theorew. Thus for ezeh q » 4
AL nmay be readiiy verifiad that the best vaium of h 12 given by
h = w({G/&q] * 1, <e (':saq <~ ¢ & J»). This vieldim vaiues of h for

q 8

x, through X of 2, 4y 1, 2y respectively. dence, upper bourkis for thease
‘ >

-

variab'es are 1, 71, O,

The rext Lheorem, whiie jntuitively evident, is extreuely useful
for ruiing soiutions oul of consfaeration when the %, ave bounced.
Theoren 'il Let n denote the greatest integer such that

L a0, < b Then an optinal sclution x* to (1) when the x; ars

S
O & Ltr i<y
x* =« ¥ 4
i
LQ for 1>y
L3 - Z ; i 4
R (& - & l)/a
7 1\ p

An {maediate consequence of Theoraex 3 13 that {t provides &
saarpar test than the condition ¥ > M when Lhe Xy are bcunded - tut this
aisn tiue when the xj ars unbcusdsd, s ' neeg 1n probles (2)

X, = [{b - ax I/Hi)’ for 4 > s. By Theorem 5, an optimal frsctioral

e e sanve -
3

i The speclal case of this theoren in which ¢, = 1 for all 1 1s dwe to
Dantziy (¢ :
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solution x* to protlem (2) when the X, are unbounded is just
“Ofort 8, 1AL, LA
WA [({b ~ ax 0/81] for § = t
(b ~ ax 8,‘X"')/&i for i = u

where t and u are the two ecnallest i, i ~» 8, for which a, <b-ax' (t<u,,
Hore peneraliy, Thecren. & may be applied in this fashion when the
variables are bounded oy substituting BL e win( [(b - ax’)/ai}, a, ) for ay,
restricting L to i » a, aau replacing b by b - ax'. 1f we denote the
optiaal cojective function vaiue for (2) obtzined by Thecram 5 under
these stipulations by 4%, then the condition M® > M {s in general
stronger than A > M, and must be satisfied if there exists any feasible
{{nteger) acluticn % such that mx > M and il - xi" for § < s.

towsvar, the test I* > M has a limitation not encounterec by the
test % > i{. The best one can co in the enumeration process when 4* < M
is to reduse tie vaiue of %, by l-~amd then retest to see if it can be
reduced fumler--before defining % in terms of x. This coatrasts with
the abjility to jouediately set §5 equal to O when H < M.

Ou the other hand; if Theoren 5 1& applied relative only to the

bounds 1,, then the objeective function value so obtained (call it ﬁ) ylelds

p
A test which enables x_ tc be handlod as with the test i > H. The
dj fierence between the powet of 4> Hand X > M should be reacily apparent
when the 1, are liaiting.

It should further be noted thet the test M > M prescribes a
significant ahorteuwt in the enuseration process when xa“ -a. To
nrow this it zust first be observed tLhat no test is applied whoan xs' =
i tre Glluore Gonory algoritinm, siace (in agcition to the fact that the
authors do na copescer bowraed varfiatles  x' is alwaye vuefined sv that

£ F

T pef re testin, Mooose will outline a uethog later in which



this limitation 1s absent. #ror the wouent, however, assume that a step
exists at which x' {s defined to equai X, ana the next vector to be

found 1s constrained to agre= with x' in (ts first s components. The

test M > i1 13 thus applicable, ang 1{ {b ie falled, all ;1 for which
w<i<s may be set equal to O, where w » aax(i ! 1<s~-1, xi.; [ 4 a'i*l.)"
The reason for this is that the Lest “ > M must continue to be failed

as long as no xi." is increesed in value for 1 < a. the upper bounus on
the x, prevenl such an increase in the xi' untii x ard¢ x' are redefined
and a new vaiue of & is determined satisfying 8 < w. Tiis is accomplished
for either definition of x‘ abuve by wetting il ~0forw<ic<es,

The foregoing rule in fact 2gplies when x; 7 B +0s ‘henv = 5 - 1, and
i. is set equal to O in accordance with the observation that x_ . and hence
xa', cannot increase in the lexicographically decreasing solution sequence
until some ;‘1 is decreased for § < s.

When the probiem is structured so that continuous solutions and
discrete solutions yield much diffsrent values for the objective function,
it 1s souetimes possible to get a sharper test than provided by either
M>HMor M* > M sinply by keeping track of information generated in the
enumeration. The key is to take advantage of the fact that the value
of 8 upon which problea (<) is based will be duplicated a number of times.
If at some point in the enuaeration b -~ ax' is no larger than at an
earlier point when (2) was defineu relative to the same s, then any bound
on & e Xy obtained for Lhe earlier protiex is an upper bound on tids
expr:’::ion for the present probiem. The must restrictive permissible
beund is of course given eitber by the best fe2sible solutior found for (2

or by the largest value of M° for which the test 4* > & was failed.

in spite of the utility of the fure;cing restults, there are many
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provleiss which require the appiic.tion of additional relations if
they are to be solved at all efficiently. In fact, one can readily
fini rroblems for which the procedures presented so far can scarcely
isiprove upon complete enumerationi. For a very siwsuie example, consider
the foliowing.
bxacple.
Maxduize SOxl * 70x., ¢ Bbc.'3 + 60xL . 55x5
subject to h}xl * L2x2 + 50x3 + leb ¢ 39x5 < 115,
where the X, are unbourkiec.
It ein readily be shown thst for this protiem the Gilmore~Gomory
algorithm will have to enumerste all but two of the entire range of
feasible solutions. The test M* > M rules out a few of these soluticnse
but still reguires examination of an excessive number of alternatives.l
To remedy this situation, it is useful to introuuce the sets SO’ Sl’ 82, oty - @
where we define Sk - ii :‘ [b/ail - k}’ Then the following theorem
and its corvllary allow the foregoing problem to be solved by enumerating
only a siugle solution, and provide a principle which can be usad to
mar<edly reduce the numbaeir of sclutions enuverated in iore couplex problems.

Thecrem 6. Assume that { ¢ 5 for all 1, and let Bi - mnx(ai, [b/ai}).

K
Uefine & suvscripted indexing sc that ¢; 2’°i 2 00 2 Cy » and let p be
1 2 n
the largest index for which L 8 < H, where H » min(k, L B8,).
g TR i
J<p ™ 1<n

Then the optimal solution x* to (1) ia given by

L i T S i~

l, Fortunately, the exauplie is simple envugh that not many feasibie
alternatives exist. hHowever, far worse exatples can easily be constructed.

— T T




Bi for § <p
Xy . R
g O for j>p

» ¥ £ Py
B J<pJ

Corollary tc Thevrem 6. Assuame that the x, are unbounded, anc that { ¢ dk
4

for all i. ¥Purther let cq - m&x(ci)o Then the optimal solution x* to (i,

is
"k for i = q
xi' .
G for i £ q.
From Lhe corollary it can be Laiediately seen thot the optimal
sclution to tha foregoing problem is obtained by setting ‘3 = 2. In

most problems one would nct expect the condition L € bk to be mal for

alli t However, adva.itage can be taxken of the rececing theorem by
noting that the sets bo, 31, s form a natural partition of the i foar

{ < n. Clearly we can find the opti al solution to (1, unaer tle

restricticn that Xy >0 only 1f 1 ¢ & . Having done so. it followa that

K

4

if a better solution to (1) exists, then x, > O for at least one i f SP

Thus, in the enuzeration process &il solutions zizy be ignored which

invoive X >0 only for 1 € 5 . Ihis of course applies al e¢ach stage

K
¢of the enuneration, for Theoren 6 may be as well siated in terus of

problem (2): that is, 1f Sk - z:i } L{b = ax }/aL] - k:a'

“1 . mln(aip ((b -~ ax ;/31]). and {f ali inaices i are restrictesd t¢c { > s,
tren the aclution specified by tre trecrea is optimal for (1) subject to
the restriction that x,” < xi' for { < 8.

To 1llustrate specifically how tris {iformation may bte exploited,

suppose that the enumeration process (s based ujon 2 lexicographically
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decreacing sequence of solutions as with the Giluore-Gomory method. Let

x' be define. in teras of x as earlier (i.e., xs’ - ;5 - 1 and x' ana x

€gr cn all other comporents), and let r = min(l I i > 8 and ai < b- ax').
Supyvse r & S where SK $s cefined relotive to problem (2) (replacing

v by b - ax', etc., 1n Theoren 6). Under the assumption that the test

4% > M is passed, apply Theorem 6 to find the optimal solution to (2)
wider the restriction that X, Qonly Lf 1 & S.“,q Then to find a better
soluticn waz next se=k the lexicopraphically largest x such that

’ > O for at least one ! such that { ¢ Sk‘

r
Thiv solution. which we denute by x, is given as follows.

Iy x.l for { <8 anc X

let L = min(ai ‘ it >r, 1 ¢ Sk)o If L is not well-defined,
X does not exist anc Lhe optiaal solution to (2) is given by Theorem 6.

herwise,

4

Xk for L < #

p!
_ (’ -1
2 T o i - -,
X ] :nm(ai,, ({b 1i.1 aJxJ ;/aiJ) fores+1<1<qg

i-1
\ adnla,, ((b - L a.x /a for §{ >

i1
where ¢ »  ain(i l i>r, 8 f S0 and &, < b - j:la’xj). i.e.,

q i# “discovered” in the prucess of assigning values to the iin

Jy redefining X to te aqual to x instead of equal to X vhen
Lhe Leats are passed and Lhe optimal solution {8 found on Sk’ segment s
of the soluticn sptce which wight otherwise be enumerated can thus be
bypessed.  in the urevious exams:le prublem; if 8 © 39 1o replaced by
a4, * 32, the ccrollary to hecrem 6 no longer applles ani we still have

a sftuation in which the Giluore-Gonery algoritlic enwaerztes nearly every

feasibie solubtior fowerver, oy using Lhe enuaeraticn procedure in which

4
S e i

B R R—

. o N i il

e N
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x is followed by x, only 6 solutions need to be examined.

Theoren 6 will of course have less application in those problems
for which H is more often equal to 3 E Bi than to k, a situation that
may occur if the a, are small and the a, cover a wide range of sizes.
For the problems in which Theoren 6 does prove useful, however, it may
be osreferable not to follow x with X im.ediately, bui. to generate only
the firat nonzero component of X for i > a8 (call it ;h). and reaefine x and
x' 8o that

(’21 fori <h ‘

p <‘ ‘. and x = x'.

O fori>h
The tests #* > M and M> M may then be reapplied, and if they are pussed.
the new x Lo follow the current x determined in its first h component.a,1

In addition to giving the tests more extensive application, an
advantage of this procedure {s the abllity it affords to skip examination
of those solutions which lie batween x and X at each level.

To give a clearer idea of how the foregoi.g oprocedure might be

incorpcrated into an enumarative algoritham, we diagram such a procedure

below

1 Likewise, in the Gilrore-Gomory alporxthm i1t would scrietimes seem
Lo ue preferable to reapply the test d > Y as successive nonzerv components
of X are generated. A simple decision rule for this situation would be
tc establish a number & (b > 0) and reapply the test M > M for successive
components of X oniy 4f M < & » M. S5imilar remarks apoly to testing

> M and M* > M. It should be noted, however, that replacing x by x may
siguificnntly change the test situation, so that the decjsion rule in this
case night need tc be more coamplex to be effective.
2 withceut the inclusion of additional rules, this procedure can be applied
opdy with difficulty to the simultaneous solvtion of several knavsack problems
in the manner_outlined by Giluore and Gomory. The reaeon for LRLS is that
the solution x defined rejiative to b = b° , unlike the sciution X is nat
always lexicographically preater than or equal to the sciutlon x aefined
reiative w0 o < b°
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start!
| Let M=0

Determine r and S,_ relative to problem (2)
(1nitially lettinf s = O ond using problem
(1)), and £ind the optimal solution on 8 ke
by Theorem 6. If this yields an objectiVe

function value for (1) greater than M, increase

M _acoordingly. :

o Does r exist, and is there an 1 > 8 such Chat
1;’SJLand:l.¢sgﬁ?

Yoo

Let.xi'-;1for1_<_h,mdx1*-01‘or1>h,

where x,_ is the first_nonzero component of x
8. _Redefine x so that x = x'.

M > M?

[T

s is well=defined for the ocurrent i. let

Loti-om‘§<15_s

E;
'ex, forifs,andx'ex -1, and redefine
o T Hig "

X so that X = x'. If s is not well-defined,
terminate. The current value of M is the optimal

1. The definitions of s, r and S, are those used in defining x above, and

the definition of w is given in the dicussion of K. The tests R > M and
M* > M are applied to x' as it is specifically defined in the algorithm.

e gt o
t
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The purpose of the foregeing diagram is of course solely
1llustrative. It is not to be construed as a representation of a
highly efficient algorithm, since it makes no use of many of the results
of this paper, and fails to enploy rules for avoiding computational
duplications or for bypassing the tests when they are u. 'rely to yleld
results.

In addition to the procedure outlined in the diagram, other more
refined results may also be derived from Theorem 6. For example, suppose
that the test M > M is applied under the provisionai assuaption that
x. =k (re Sk) and x, = 0 for 1 ¢ S0 1 Y r, where r is defired as
above. if the test is falled, it follows that for any optimal solution
x* to (2), xr"' < k or xl“‘ =0 for all i ¢ S~ For suppose that xr" = k.
Then in order to satisfy ax < b, xi‘ =0 forallic Sk except £ = r.
But xi" >0 fori g Sk is then impossib le, since the test M>Mwas
conducted wider precisely these assumptions. Moreover, the failure of
the test implies that if i replaces r in t‘ho test for any 1 ¢ Sk’ 1>r

the test will continue to be failed as long as a, < a.. iore generally,

i
there can be no assignment of values to those x, for i ¢ Sk and £ > r

which ylelds L 8, X, < klr, where the swmation is over { ¢ Sk' i >r

The fact that x, > 0 is required for at least one i ¢ Sy still holds

(provided the optimun on S_ has beer fourvi), and may be used to develop

k
still further restrictions.
Conclusion.

The niu ective of this paper has been to develop relations which

may be used to improve the efficiency of algorithms for the knapsack
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problen.  Hesults cverived have peen illustrated princlpally in teraa

of a leaxicographically deereasing solution sequence such as esuployea

by Cilmore anag Goaory, although we have shown
te depart frow the way in which Gliuore arg Gomory define

solutions: e. g., auploying Theoren 6 ana following x wit

hat 1f can

be agvantagecus
consecut ive

"
h x {neteaa of

I ) ! L -
x ankes 1t possible Lo aclve certaln problexs after exacdining oniy a

fraction of the alternatives enumerated by Gilicre ard Gomory. Although

cur resultse nay be uved in a variety of ways, the actual design of a

svecifle algorithao—except for purposes ol {llustration-=has not been

1
uncertaren.

- e - o s

)

+o For & specific algorithu which dezls with the integer programuing

problen more generally, ang which 1# baned
this paper, zee [4],

4
ats

part on results founa 14




APPENLIX

Proof of Theorem 1. Ouppose that x“ »p> hk for scme optimal sclution

x* 1o (1). Then X" o ((b ~ pak)/ai'] for each 3 # k- UDefine q ~ [p_/:x,/).

tx wx* -qh,andX ~x° 1 A k. Thus O § X
and let X "X qhk’ nd x Xy *qhi for 1 ¥ k. Thu U}ka<hkg

1
and clearly cx > cx* and ax < ax* by (if) and (11i), heace X is optizal
provided .:c'i £ 6y for i f k. This is assured provided
{(b - paK‘)/a‘J * ghy < a, for h, #0and 4 £ k. whenp =1, p2> h >0
impiies q » 1 and the above relation holds %y (iv). Tu general, we note
that a/a, 2 hi/h oy (1ii), and since p/h > (p/n | = g, 1t follows that
! ~. = / ~. - 4 ) =
(p = h )a a 2 (p~h)n/r > hq o h. Adding b/s, ¢ h . /a
t.o the first and last expressiuns yizlds
# . / o nNe

(b - hkak)/aat hi > (b paK)/a1 ’ qhi But then
r & ; - / p
{ (v - hkak),/ai hj] > (v pak)/a‘. 'qhil, ana since h, and gh,

: - v/, - z .
are integer, [(b L ail h, 2 ((b puk)/'xi] qh,» hence

x, <a, by (iv). When L he, > h e , we obtain cx > ¢x*, proving the

last part of the theorem by contradjction.

Proof of Thecrem 2. Assuue thal for every optimal solution x*,

xi‘ >x, foralli g Pq. and xq' > iq" Then for every such soluticn,

X" < x, for at least cne i ¢ Pq (say for 1 = p) in orcer tu satiefy

*®

ir,
o
°

Let x* spacifically denote an optinal solution for which xq
assumes {ts suallest value. Then define x' by xi" » xi' 1f 1 Fpanit /y,

-~ , L

X "*x® <1, anax ' =x*e<efe> Clearly ax’ < ax®, ox’ > cx’,

q 94 P P qQ P -t
and x_ "< X *<c /e - 1< a, contrary to the assumption that
p T Xt Segley = p id g
b & by - 7 ? 1 1 N @ . « >
X, 2 % in any eptimal soluticn. Whes [calci,; 1 replaces \cq/ci)‘

the second part of the thecrea lauediately follows by letting x* dencte
any optiial solution in whichk (&) andi (ii) are both false, and noting

that tils implies the contraciction ex' > cx*



Peoof of Theorew 3. JSuppose that for every optinal solution x°,

_\_p' < ;;p and x* x, for all i ¢ Qp~ Let it further be assuasd that

x* denotes an optimal sclution in which xp' assunss ite largest value,

Since ex' > ¢x (or else xp‘ ~ x_\ would be possitle,, x,° > 3':'1 for some
r 1

1€ Qp, say for 1 = gq. But then In the solutiorn x° defiied by

¥, * %" for i pand i ¥ q, xq" - xq" - 1, and xp" - xp‘ 5 <cq/°p>"
we have ex' 2> ex”, ax' < ax*, and xp‘ < 6 , coatrary to the essuaption
that X, < :.p' in any cptimal soluticn to (1)~ ihen <cq/cp> i3 raplaced
by fcq/cnj * 1, the seccond psrt of the theurem folicwe analogously,
tetLing x* denote any optiwal soluticn in whick (1) and (i4) are botn

false, and noting that ecx' > ex™.

“rool of Coroliary to Thegren 3. Note that for p< s and L > 3

S e

a.p X, el « ]~ <c-i/cp>, and hence <ey cp>ap S8 Thus for each

’

p s, 4, includes all i > 8, and there exists an optimal solution x’
o oahieh (3) xp’g X, or (i1) X% > ii for soue i £ Qp’ hence for some i < 5.

Lirce (1i) is impossible, for each p < 8 there exists an optimal sclution

¥ s 4pe Select one such p, say p - q, end replaie

the variable X by the constant iq"‘ reducing the criginal problem to a

in wnieh x
P

nevw cne. Clearly tre octimal solution to this latter problem in
conjunction with X, * xq yields an optimal solution te the original
problem. Baut for the new problem, Theorem ] again i{amplies that for each
resatning p such that p < s, xp‘ - ip in some optimsl solution x*. Thus
we pay repeat the prucess of eeleeting one such p, denoted by q, and

w3aigning the variable xq the constant value lq continuing until no more
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p remain which satisfy p < q. But since a, > b - ax for 1 > s

there 1s no solution x' in which x ' = 'i,) for p < s and xi' >0 for
r 3
1> s, Hence X is ouvtimal.

Proof of Thecrem L. Suppose that for every optilal soiution x°, xn’ & b
3

and x,* < x, for all 1 < s. Clonsider the problesm: Laximize ex,
subject to ax < ax (= b~ G), and N S x for 1 < so In this latter
problem answie alsc that aq is replaced by aq - G/h. 5ince xq‘ > h

in the original problea; then the saae solution x* yleids ux* <b - G
in the new problem. 3ut x is optlmal for the new prublem by Theorem 5
(proved beiow). Hence cx 2 cx', and x is in fact optimal for the
original problem, contrary to the fact that Séq *» 0 < h. The last part
of the theorea follows sinllarly, letiing x* denote a single anlution

for which the theores is supposedly false, anc concluding ex » ex”.

Proof of lheorem 5. Assume the theoren false, and let x denote & fessiule

solution to (1) for which e¢x > cx*. Let L' dencte the sumsaticn over

those { for which x, > x, %, and let C" dencte thre summation over Lhose

i 1

> . ¢ { & Py En i "'. = . Y ” = ) )
i for which X, <% Then ¢ex « ex t:i(x1 X ) T cgix, -,

) o o e 4 * " s - *Ve
L' 8 ()r.i x, )ci/ai 2 at(xL x, )c.i/a1

T = - ® f (oL, ] " < v
c/a{ iagxg x.*) ¢ \C:,/&p) E aj(xi x,*)

-u
£

- \c;/ap, (ax - ax®), aince frow the definition of x' ii follows that
all 1 associated with &' satisfy 1 < p, and all i assoclated with "

satisfy & > p. But ax’ + . aa, ¢+ a{o- -an)/a ~ b,
i-.:pii p icp >4 P

and hence ax - ax* < Q. Thue e¢x - ex® < O, contrary to assumption.

Proof of Theores &. e note that e e XT S Bi for all 4,

e




v

1Y

and that L a;x,* <aHgekZb, wherea = ma.x(ai).. Uue to the
{ <n 4 =4 q

te ‘nition of the subseristed inaexing, a. X S & cixi‘ for eny

in o
A
=

i

v -n

soiution z such that

-

< H. Clearly ¢ ;Ei s

i g, if x is
L5 n " i

i
n

tA
| e
L 7ANY

feasible. Hence it renains to show only that X, < k fer any feasible

solution X. Supsose on the contrary that ¢ X, > k + 1, and let

a}__ s mix:(ai,\. Then , } aiii k. & ii > ap(k vd) * N,

1 r pi’n

-~
- -

3

which is impossible.

riech of the Corolingy to Theorws 0. Toe corcllary is a apecial case

of the theoren.
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